
1 
 

REAL OPTION VALUE, CH 13 

REAL REVENUE OPTIONS                             March 2015  

A provider of perishable goods or services with or without some pricing power (prices may be 

endogenous or exogenous) may hold several real revenue options.  (I) Revenue options may be written 

or purchased calls, written or purchased puts, with different payoffs for the service provider and the 

customer.  (II) There may be different prices for different types of customers (sometimes for slightly 

different products, or at different times and places), and opportunities to switch customers.  (III) The 

service provider may allocate constrained supplies to market segments.  (IV) The facility operator may 

sell more future services than feasible capacity, assuming some purchasers with refundable (or no 

advanced) payments will cancel.   

From the prospective of the producer of the perishable good or service, there are four basic types of 

payoffs from arrangements with the prospective customer.  Each arrangement offers advantages and 

disadvantages for the seller (service provider) and the buyer (customer), and results in a distinct strategy 

payoff for the provider that resembles one of the characteristic option payoff strategies.  For 

convenience assume that the seller creates part of the perceived value of the future good or service by 

committing to a specific known cost, which may be a mixture of capacity investment cost (such as a 

stadium, hotel, scheduled airline service or event) and committed operating costs (such as operating 

fees, employee and semi-durable costs).  For instance, an airline may offer a scheduled service between 

Denver and Phoenix, which involves prior costs of the airport slots and fees, the airplane and fixed costs, 

plus the costs of the fuel, labor and other expenses during the flight.  Assume the airline cannot cancel 

the flight if sufficient passengers do not show up.   

The next section provides some basic payoff diagrams for a service provider like an airline, which is more 

profitable the higher the revenue (seats sold times ticket price), entering into various arrangements with 

customers, which alter the profits as revenue changes. Section two suggests a formal model for 

switching between different market segments, such as upper and discount class fares for an airline. 

Section three looks at allocating limited capacity between different market segments.  The last section 

examines overbooking options, where some passengers especially those with refundable tickets do not 

show up for scheduled flights, and overbooking allows the service provider to fill perishable service 

capacity.  All of these activities are typical alternative actions in the tourism, accommodation and 

transportation industries.   
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I   Revenue Arrangements and Resulting STRATEGY 

SELLER (SERVICE PROVIDER) SELLS A CALL OPTION TO THE CUSTOMER:  STRATEGY ONE 

For various reasons, as a service to the customer, who values the security of a reservation, but is 

uncertain about using it, or because the airline may want to partially fund the venture, the airline sells 

refundable tickets. The option premium is the credit availability and no interest on the advanced sales 

amount, and the option element is the refund for no shows.  The customer pays $$ for the option to 

purchase the specific flight and does not receive any refund upon flying, but %$$ if not flying. The option 

premium should be higher, the greater the value the customer puts on a guaranteed seat combined 

with a greater uncertainty on using that reservation.  The higher the apparent load factor prior to 

departure, the greater the option premium, while customers will pay little for flights that have high 

apparent capacity, or low load factors. Few reserve seats in nearly empty churches. 

For writing revenue call options, the seller receives an equivalent option premium, sometimes upfront, 
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REAL OPTION PAYOFFS
SERVICE VALUE 0 25 50 75 100 125 150 175 200 225 250 275 300

SERVICE VALUE-COST -150 -125 -100 -75 -50 -25 0 25 50 75 100 125 150

WRITE REAL CALL INTRINSIC 25 25 25 25 25 25 25 0 -25 -50 -75 -100 -125

STRATEGY RESULT -125 -100 -75 -50 -25 0 25 25 25 25 25 25 25

Value of Commited Cost, K 150             

Option cost, y 25
 Own a valuable service which involves a pre-commited cost K, sell to customer an option to buy the service at nil cost, for immediate payment of 

option premium of y.

  STRATEGY RESULT equals write real put on net service value.

WRITE REAL CALL INTRINSIC IF(B3>0,-B3+$B$7,$B$7)

STRATEGY RESULT B3+B4
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for alternative future actions that the buyer may take, sometimes at specified exercise prices or limits.  

Sometimes the apparent option premium is observable as the difference between truly non-refundable 

and completely refundable air ticket reservations.  Here is an illustration where the seller (such an 

airline) sells a call option to the passenger at a refundable fare which is 25 higher than a non-refundable 

fare.  If the value of service offered increases, or the passenger departs, the airline does not receive any 

additional fare, but otherwise there are empty seats.  The present value of the scheduled flight costs is 

150 per available seat.  If the current value of one seat is 150, with an extra cost of a refundable fair of 

25, the resulting strategy is a profit for the airline of 25.  But if the “service value” falls to 0, the airline 

has to provide the service, but refundable passengers will not show up, resulting in a loss for the airline 

of 125.  The net strategy result for the service provider is similar to writing a real put option, suffering on 

the downside, with the upside limited to the option premium. 

SELLER BUYS A CALL OPTION FROM THE CUSTOMER:  STRATEGY TWO    
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Value of Commited Cost, K 150             

Option cost, y 25
 Own a valuable service which involves a pre-commited cost K, buy from customer an option to repurchase the right to the service for immediate 

payment of option premium of y.

  STRATEGY RESULT equals write real put on net service value.

BUY REAL CALL INTRINSIC IF(B3>0,B3-$B$7,-$B$7)

STRATEGY RESULT B3+B4
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In buying revenue call options from customers, the seller pays an option premium usually in terms of 

reduced prices, or alternatively a rebate to customers.  In overbooking, an airline obtains the possibility 

of repurchasing tickets in order to re-sell to other customers willing to pay higher prices, assuming that 

the original customer does not value the specific date and flight reserved as much as the compensation.  

In overbooking compensation, airlines induce passengers to withdraw.  These arrangements are not 

unusual in the energy world, where some firms agree to interruptible energy from an energy supplier. 

The strategy result is similar to holding a super call option which is equivalent to a leveraged operation, 

where the potential upside is enhanced, but the downside is increased by the option premium. 

PROVIDER SELLS A PUT OPTION TO THE CUSTOMER:  STRATEGY THREE 

  

 

If the provider offers to repurchase tickets from the customers if required, also known as “money back 

guarantees”, the provider has in effect written a revenue put option.  Sometimes this is presented as a 
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Value of Commited Cost, K 150             

Option cost, y 25

Sell a valuable service which involves a pre-commited cost K & sell to the customer an option to resell the service back to the producer

The seller receives from  the customer an upfront premium, or alternatively requires the customer to pay a higher initial price.

  STRATEGY RESULT equals write a super put on service value.

WRITE REAL PUT INTRINSIC IF(B3<0,B3+$B$7,$B$7)

STRATEGY RESULT B4+B3
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quality assurance scheme. The net strategy amounts to the provider holding a super put option, 

equivalent to leveraged operations, where the downside is increased, but the upside is increased only by 

the option premium.  The service provider benefits from upward movements in the service value, but 

loses more on the downside, than without such money-back guarantees. 

PROVIDER BUYS PUT OPTIONS FROM THE CUSTOMER:  STRATEGY FOUR 

In this case, the seller of the good or services requires the customer to purchase the service at a fixed 

price in case the price falls.   An example might be a developer (provider of accommodation services) of 

an educational establishment which an institution decides will enhance the community.  But if not 

enough external students show up, that institution agrees to take up the places, possibly at reduced 

rates.  The take-or-pay guarantee from the institution provides the assurance for external funding for 

the development.  Sometimes these guarantees are public and explicit, sometimes covert.  The net 

strategy results in the service provider holding a net call option on the service provided, with limited 

downside risk and the upside reduced by the option premium. 
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Note that often service providers might purchase or sell options on required inputs such as aircraft and 

facilities, wages and fuel.  Providers buy calls on inputs such as supplementary aircraft or employees 

when existing aircraft fail to operate, or additional facilities are required due to massive overbooking.  

Car rental firms often acquire additional cars from other firms when there is a geographical imbalance, 

or renters do not return cars when scheduled.  Providers may sell calls on inputs such as supplying spare 

available capacity to other service providers, and may buy puts on inputs or sell puts on inputs. The 

strategy result for the service provider will typically be the opposite of writing/buying options on their 

outputs. 

II REVENUE   SWITCHING USE OPTIONS    

Revenue switching options are often embedded in facilities, or situations, sometimes developed with 

the imagination and initiative of the participant, or manager.   For instance, hotel managers may have 

the option of reconfiguring rooms into “luxury” or “budget”, airlines separate discount from first (or 

upper) class, and universities may offer premier MBA classes at a higher tuition rate than standard 

Masters classes.  Sometimes the higher fare or rate for luxury-first-premier is due partially to higher 

operating costs and services [more space for air travellers], but it may be accompanied by lower 

volumes or alternatively simply higher margins.  Many articles on pricing and revenue management are 

focused on such price differentiation, assuming that prices are endogenous and demand is stochastic.   

 

For convenience, assume initially that separate prices for upper/discount classes are exogenous and 

stochastic, and may be correlated.  The facility manager decides periodically what differential prices 

justify reconfiguring a facility at a deterministic or constant switching cost based on a perpetual output 

switching model that allows for differential operating costs.  As a simplification (and reduction in the 

number of equations required for a solution), a single switch, such as from discount to a permanent 

upper class only, is also considered.  The model for switching to the best of two outputs is adapted from 

Dockendorf and Paxson (2013).   

1 OUTPUT SWITCHING OPTIONS 

 

When is the right time for an operator of a flexible facility such as an airline to switch back and 

forth between two possible outputs like upper/discount classes in order to maximise value when 
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switching costs are taken into account? Which factors should be monitored in making these 

decisions? How much should an investor pay for such a flexible operating asset? What are the 

strategy implications for the operator, investor and possibly for policy makers? 

 

The traditional approach to determine switching boundaries between two operating modes is to 

discount future cash flows and use Jevons-Marshallian present value triggers. This methodology 

does not fully capture the option value which may arise due to the uncertainty in future output 

prices. The value of waiting to gain more information on future price developments, and 

consequently on the optimal switching triggers, can be best viewed in a real options framework. 

 

Conceptually, the switch between two volatile assets or commodities can be modelled as an 

exchange option. Margrabe (1978) and McDonald and Siegel (1986) model European and 

American perpetual exchange options, respectively, which are linear homogeneous in the 

underlying stochastic variables. Geltner, Riddiough and Stojanovic (1996) develop a framework 

for a perpetual option on the best of two underlying assets, applied to the case of two alternative 

uses for properties, and provide a comprehensive discussion of relevant assumptions for such a 

contingent-claims problem. Childs, Riddiough and Triantis (1996) extend this model to allow for 

redevelopment or switching between alternative uses.  

 

The next section presents two real option models for an asset with switching opportunities 

between two outputs with uncertain prices, taking into account switching costs and operating 

costs. The first model is a quasi-analytical solution for multiple switching among the best of two 

outputs; the second for single one-way switching.  

2 Output Switching 

2.1 Assumptions 

 

Consider a flexible facility which can be used to produce one of two different outputs by 

switching between operating modes. Assume the prices of the two outputs, x and y, are 

stochastic and possibly correlated and follow geometric Brownian motion (gBm): 

 
  xxxx dzxdtxdx   (1) 
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   yyyy dzydtydy   (2) 

with the notations: 

μ Required return on the output 

δ Convenience (or asset) yield of the output 

σ Volatility of the output 

dz Wiener process (stochastic element) 

 

The instantaneous cash flow in each operating mode is the respective price of the output less unit 

operating cost, assuming production of one (equivalent) unit per annum,  (x – cx) in operating 

mode ‘1’ and  (y – cy) in operating mode ‘2’. The operating costs cx and cy are per unit (either 

hotel room or airline seat, or entire hotel, or aircraft). A switching cost of S12 is incurred when 

switching from operating mode ‘1’ to ‘2’, and S21 for switching back.  The appropriate discount 

rate is r for non- stochastic elements, such as constant operating costs.  For convenience and 

simplicity, assume that the appropriate discount rate for stochastic variables is  and r. 

 

Further assumptions are that the operating costs are deterministic and constant, the lifetime of the 

asset is infinite, and the company is not restricted in the product mix choice because of selling 

commitments. Moreover, the typical assumptions of conventional real options theory apply, with 

interest rates, convenience yields, volatilities and correlation constant over time. 

2.2 Quasi-analytical Solution for Multiple Switching 

 

The asset value with opportunities to continuously switch between the two operating modes is 

given by the present value of perpetual cash flows in the current operating mode plus the option 

to switch to the alternative mode. Let V1 be the asset value in operating mode ‘1’, producing 

output x, and V2 the asset value in operating mode ‘2’, producing output  y accordingly. The 

switching options depend on the two correlated stochastic variables x and y, and so do the asset 

value functions which are defined by the following partial differential equations: 

  (3) 
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  (4) 

      0
2

1

2

1
2

222

2

2

2

2
22

2

2

2
22 
























yYXYXYX cyrV

y

V
yr

x

V
xr

yx

V
xy

y

V
y

x

V
x   

Two-factor problems which are linear homogeneous, i.e.    y;xVy;xV  , can typically 

be solved analytically by substitution of variables, so that the partial differential equation can be 

reduced to a one-factor differential equation. An example of this is the perpetual American 

exchange option in McDonald and Siegel (1986), or Paxson and Pinto (2005) considering 

competition. With constant switching costs, operating costs and multiple switching,  the problem 

is no longer homogenous of degree one and the dimension reducing technique cannot be used.  

 

Dockendorf and Paxson (2013) following Adkins and Paxson (2011) derive a quasi-analytical 

solution for a similar type of two-factor non-homogeneous problem. For two outputs, the partial 

differential equations are satisfied by the following general solutions: 

   1211,1




yxA

r

cx
yxV x

x

  (5) 

where β11 and β12 satisfy the characteristic root equation 
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and 
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  (7) 

where β21 and β22 satisfy the characteristic root equation 
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Since the option to switch from x to y decreases with x and increases with y, β11 must be 

negative and β12 positive. Likewise, β21 must be positive and β22 negative. Switching between the 

operating modes always depends on the level of both x and y. At the switching points (x12, y12) 

and (x21, y21), the asset value in the current operating mode must be equal to the asset value in 

the alternative operating mode net of switching cost. These value matching conditions are: 
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Furthermore, smooth pasting conditions hold at the boundaries: 
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There are only 8 equations, (6) and (8) - (14), for 10 unknowns, β11, β12, β21, β22, A, B, x12, y12, 

x21, y21, so there is no completely analytical solution. Yet, for every value of x, there has to be a 

corresponding value of y when switching should occur, (x12, y12) from x to y and (x21, y21) from 

y to x. So a quasi-analytical solution can be found by assuming values for x, which then solves 

the set of simultaneous equations for all remaining variables, assuming x = x12 = x21. This 

procedure is repeated for many values of x, providing the corresponding option values and the 

switching boundaries. 

 

The switching thresholds suggested by the Marshallian rule are to switch from x to y when 

12 12
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y x

y x
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   and from y to x when 21 21

21

y x

y x
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 
   .      

2.3 Quasi-analytical Solution for One-Way Switching 

 

The solution for the asset value with a one-way switching option from the above model with 

continuous switching is straight-forward, so that the American perpetual option to switch from x 

to y (upgrading or reconfiguring a facility to accommodate upper-higher fare class) can be 

determined. The asset value V1S is given by (5) with the characteristic root equation (18), and 

V2S is given by (7) with B=0, thereby eliminating the option to switch back. Applying the same 

solution procedure as before, a quasi-analytical solution is obtained. 
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Furthermore, smooth pasting conditions hold at the boundaries: 
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where β11 and β12 satisfy the characteristic root equation 

 
        0rrr11 y12x111211yx1212
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1  , (18) 

 

The characteristic root equation (18)  together with value matching condition (15) and smooth 

pasting conditions  (16) and  (17)  represents the system of 4 equations, while there are 5 

unknowns, β11, β12, A, x12, y12.  A solution is obtained if x=x11=x12, so y12/x12=-12/11, and A=(-

1/x)/(11*(x12
11-1)

)* y12


). 

3.  Numerical Illustrations 

Here are illustrative results for the multiple and single output switch models for an airline or 

entertainment/accommodation facility, assuming current operating costs for the upper and 

discount classes are the same in this case, as are the convenience yields, but the upper class fare 

volatility is double that for the discount class, and it is three times as expensive to reconfigure the 

facility for the upper class than for the discount class.  Figure 1 shows that the option coefficients 

A and B are positive, β11 and β22 are negative and β12 and β21 are positive, thereby fulfilling the 

requirements from the theoretical model. The system of value matching conditions, smooth 

pasting conditions and characteristic root equations is fully satisfied. 

The asset values are given in both operating modes, V1 and V2, and the level of y is indicated 

when it is optimal to switch from x to y (y12) and vice versa (y21). The asset value with no 

switching is lower currently for the discount class, but the asset value with the switching option 

is high. Figure 1 shows that when operating costs are 50, the asset value V1 with continuous  

Figure 1 
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                         Multiple American Perpetual Output Switch Option   

OUTPUT x Discount Class x 70  

OUTPUT y Upper Class y 100  

Convenience yield of x δx 0.04

Convenience yield of y δy 0.04

Volatility of x σx 0.20

Volatility of y σy 0.40

Correlation x with y ρ 0.00

Risk-free interest rate r 0.05

Operating cost for x cx 50

Operating cost for y cy 50      

Switching cost from x to y S12 300

Switching cost from y to x S21 100

PV of revenues x X 750  

PV of revenues y Y 1,500  

Switching boundary x to y x12 70

Switching boundary y to x x21 70

SOLUTION OPTION OPERATING

Asset value in operating mode '1' V1(x,y) 2,216.01 1,466.01 750.00

Asset value in operating mode '2' V2(x,y) 2,359.22 859.22 1,500.00

A 8.37

B 8.67

Switching boundary x to y y12 (x) 196.10

Switching boundary y to x y21 (x) 28.01

Solution quadrant β11 -0.2144 must be negative

Solution quadrant β12 1.3196 must be positive

Solution quadrant β21 1.3828 must be positive

Solution quadrant β22 -0.2775 must be negative

EQUATIONS

Value matching 1 EQ9 0.000

Value matching 2 EQ10 0.000

Smooth pasting 1A EQ11 0.000

Smooth pasting 1B EQ12 0.000

Smooth pasting 2A EQ13 0.000

Smooth pasting 2B EQ14 0.000

Solution quadrant 1 EQ6 0.000

Solution quadrant 2 EQ8 0.000

Sum 0.000  

SOLVER: SET C41=0, CHANGING C24:C31

Marshall Thresholds M x to y 82.00 C6*(C15+C3/C5)

Marshall Thresholds M y to x 66.00 C6*(-C16+C3/C5)

M Spread 16.00 C48-C49

EQ9 (C24*C19^C28*C26^C29+C19/C5-C11/C10-C25*C19^C30*C26^C31-C26/C6+C12/C10+C15)

EQ10 (C24*C20^C28*C27^C29+C20/C5-C11/C10-C25*C20^C30*C27^C31-C27/C6+C12/C10-C16)

EQ11 (C28*C24*C19^(C28-1)*C26^C29+1/C5-C30*C25*C19^(C30-1)*C26^C31)

EQ12 (C29*C24*C19^C28*C26^(C29-1)-C31*C25*C19^C30*C26^(C31-1)-1/C6)

EQ13 (C28*C24*C20^(C28-1)*C27^C29+1/C5-C30*C25*C20^(C30-1)*C27^C31)

EQ14 (C29*C24*C20^C28*C27^(C29-1)-C31*C25*C20^C30*C27^(C31-1)-1/C6)

EQ6 0.5*C7^2*C28*(C28-1)+0.5*C8^2*C29*(C29-1)+C9*C7*C8*C28*C29+C28*(C10-C5)+C29*(C10-C6)-C10

EQ8 0.5*C7^2*C30*(C30-1)+0.5*C8^2*C31*(C31-1)+C9*C7*C8*C30*C31+C30*(C10-C5)+C31*(C10-C6)-C10

SPREAD 168.09 C26-C27

V1(x,y)  EQ 5 C3/C5-C11/C10+C24*C3^C28*C4^C29

V2(x,y)  EQ 7 C4/C6-C12/C10+C25*C3^C30*C4^C31
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switching opportunities is valued at 2216 if the discount fare is x12=70 with a volatility of 20%. 

The switching option value is the difference between the asset value and the value with no 

switching option, 2216-750=1466, and 2359-1500=859 for V2.  The option to switch between the 

two operating modes adds a lot to the inflexible asset value.  Switching to output y is justified if 

y increases to 96% higher than currently, and back to x, if the y output price falls to almost one 

quarter of the current y price. The spread between y12 and y21 is due to switching costs and 

stochastic elements, and increases with high volatilities and low correlation, following real 

options theory. It should be noted that changing x also changes the switching boundaries y12 and 

y21, and that the switching boundaries x12 and x21 for a given level of y can be determined in a 

similar way. The Jevons-Marshall rule of switching when the present value of the difference in 

the output values exceeds the switching costs indicates that a switch from x to y is justified now.    

      Figure 2 

 

Figure 2  illustrates the sensitivity of the switching boundaries of the quasi-analytical solution for 

continuous switching to changes in x and y output price correlation.  Switching boundaries are 

further apart when correlation is completely negative, and narrower when correlation is perfect, 

since exchange volatility decreases with increase of correlation. This is consistent with  general 

real option theory because uncertainty is taken into account which delays switching in order to 

gain more information. In contrast, the Marshallian rule stipulates that switching is optimal as 

soon as the present value of expected cash flows after switching exceeds the present value of 

expected cash flows before switching by the switching cost regardless of the output volatilities or 

correlation.      Figure 3 
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Continuous American Perpetual SINGLE SWITCH Option

ONE WAY SWITCH FROM OUTPUT x TO y   

OUTPUT x Discount Class x 70  

OUTPUT y Upper Class y 100  

Convenience yield of x δx 0.04

Convenience yield of y δy 0.04

Volatility of x σx 0.20

Volatility of y σy 0.40

Correlation x with y ρ 0.00

Risk-free interest rate r 0.05

Operating cost for x cx 50

Operating cost for y cy 50

Switching cost from x to y S12 300

   

PV of revenues x X 750  

PV of revenues y Y 1,500  

Switching boundary x to y x12 70

   

SOLUTION OPTION VALUE

Asset value in operating mode '1' V1(x,y) 2,044.51 1,294.51

Asset value in operating mode '2' V2(x,y) 1,500.00 0

A 9.54

Switching boundary x to y y12 (x) 344.55

Solution quadrant β11 -0.2666 must be negative

Solution quadrant β12 1.3123 must be positive

EQUATIONS

Value matching 1 EQ 15 0.000

Smooth pasting 1A EQ 16 0.000

Smooth pasting 1B EQ 17 0.000

Q function EQ 18 0.000

Sum 0.000  

SOLVER: SET C31=0, CHANGING C22:C25

EQ 15 (C22*C17^C24*C23^C25+C17/C5-C11/C10-C23/C6+C12/C10+C13)

EQ 16 (C24*C22*C17^(C24-1)*C23^C25+1/C5)

EQ 17 (C25*C22*C17^C24*C23^(C25-1)-1/C6)

EQ 18 0.5*C7^2*C24*(C24-1)+0.5*C8^2*C25*(C25-1)+C9*C7*C8*C24*C25+C24*(C10-C5)+C25*(C10-C6)-C10

SPREAD 244.55

V1(x,y)  EQ 5 C3/C5-C11/C10+C22*C3^C24*C4^C25

V2(x,y)  EQ 7 C4/C6-C12/C10

CALCULATOR ANSWER

y12 (x) 344.55

-C25*C17/C24
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When switching is only possible from x to y but not vice versa, the switching trigger  y12S  is 

much (175%) higher as shown in Figure 3 because the decision cannot be reversed. The option 

value V1S is 12% lower for switching from discount to upper class once only compared to 

multiple switching back and forth.  Note that the value given by the “calculator answer” as 

specified in Exercise 13.1 is the same as the numerical answer provided by Solver. 

 

4 Policy and Strategy Implications 

There are a number of stakeholders shown in Figure 4 whose best decisions should be based on 

these switching models. 

                Figure 4 

                        

  

 

Investor 

The real option value of these flexible facilities is substantially greater than the present value of 

current production (= inflexible facilities), at the current assumed  input and output price levels.  

Note the focus of alert investors is on choosing the appropriate model and on forecasting input 

and output price volatilities and correlations.  A myopic investment analyst using net present 

values will probably undervalue flexible facilities.   Analysts may not have access to plant 

operating or switching costs, or indeed knowledge of any flexibility inherent in existing 

facilities, due conceivably to inadequate accounting disclosures, not currently required by 

accounting standard setting committees.  Of course, realistic analysts may doubt that the chief 

option managers of flexible facilities will be aware of the potential optionality, or indeed make 

Flex Facility 

Investor 

Policy makers 

CROM 

Customer Facility 

supplier 
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switches at appropriate times, so the Marshallian values might reflect a realistic allowance for 

management shortfalls. 

 

Chief Real Options Manager 

The alert chief real options manager (“CROM”) is aware of output switching opportunities, the amount 

of switching costs, and periodically observes output prices, convenience yields (or proxies), updates 

expected volatilities and correlations, and so updates either Figure 1 or 3 appropriately.  Observed 

current spreads between output prices are compared to the updated triggers for switching.  Naturally 

part of the appropriate compensation for the CROM should be based on awareness of these 

opportunities, and performance in making actual output switches at appropriate times.  Originally, the 

CROM would have calculated the value of a flexible facility V1 or V2, compared to an inflexible facility, 

which also indicates the warranted extra investment cost for facility flexibility.  It would not be difficult 

to consider trade-offs for any deterministic lower efficiency due to the flexibility capacity. 

Facility Supplier 

Originally, suppliers of facilities to the CROM would have calculated the value of a flexible plant V1 or V2, 

compared to an inflexible facility, which also indicates the warranted extra investment price that could 

be charged for facility flexibility. With the illustrated parameter values, a hypothetical multiple switch 

facility is worth only some 5-15% more than a single switch plant, but much more than an inflexible 

facility.  In designing flexible facilities, it would not be difficult to consider trade-offs for any lower 

efficiency due to the flexibility capacity against increased building costs. 

Customers 

Output customers may be aware of the limitations, or capacities, of producers to switch to higher 

price products, opportunistically.  Other customers might seek long-term agreements mitigating 

the shifts in output prices implied in using real option approaches for operating flexible facilities.  

 

Policy Makers 

 

Taxpayers beware.  There will be national airlines or treasured hotels without flexible facilities, 

or not aware of needing to reconfigure, as the economic environment changes.  Those managers 

priced out of the market will seek government barriers for other operators, special tax relief, or 

input/output subsidies as conditions change.  
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III  CAPACITY ALLOCATION BETWEEN FARE SEGMENTS 

Suppose customers (for airline seats or hotel rooms) can be segmented into two distinct 

classes, luxury and discount, where perhaps purchase restrictions, refundability or servicing 

characterize each group (or use, such as business and leisure).  Assume the same unit of 

capacity can be used to service both groups.  The problem is to allocate the capacity among 

these two classes, if the discount class demand occurs first, by reserving a minimum number of 

capacity units for the luxury class,   

Netessine and Shumsky (2002) define a booking limit b* as the maximum number of units that 

may be offered at the discount price, C as the number of units of capacity, and p* as the 

number of units reserved for the luxury class, where b*= C-p*.   

As described in Phillips (2005), Littlewood (1972) proposed a simple rule that the optimal level 

allowed for discount booking at a fare pd, when there are customers at a net full-fare pf (having 

deducted any extra costs to service the full fare customers) and capacity is C, is the minimum of 

the inverse cumulative normal distribution function of the relative fares, or C.  

  
1* min[ ( / ), ]d d fb F p p C              (19) 

The Excel formula for 1

dF   is NORMINV(pd/pf, mean, standard deviation), where “mean” is the average 

luxury fare demand for a particular flight (or hotel room for a particular date) and “standard deviation” 

is the volatility of that demand.  Note that the mean and volatility of the discount fare demand is not 

relevant, nor is the capacity, except as a limit.    

Phillips (2005) provides an example where the mean full-fare demand for a flight with a 100-seat aircraft 

is 50 with a standard deviation of 100.  Suppose that the pf=20 and pd=8, the maximum bookings 

allowed for discount passengers should be 25.  As shown in Figure 5, at very low full-fare volatility b* 

approaches the full-fare mean, and b* decreases with the increase of full-fare volatility.  At high 

volatility it is worth taking the chance that full-fare passengers will eventually fill the plane, if the 

relative yield from the discount passengers is not high.   
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Figure 5 

 

 

 

Note that when the discount fare is high relative to the full-fare, the optimal booking limit for the 

discount class increases as the full-fare volatility increases as shown in Figure 6, because large full-fare 

volatility implies also that the full-fare passengers may not fill the plane, which justifies allowing 

passengers at  not-so-discounted fares to book seats in advance. 
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Stochastic Demand in Capacity Allocation
INPUT   

pf $20 $20 $20 $20 $20 $20

pd $8 $8 $8 $8 $8 $8

MAX C 100 100 100 100 100 100

D mean 50 50 50 50 50 50

D stdev 1 25 50 75 100 125

pd/pf 0.40 0.40 0.40 0.40 0.40 0.40

OUTPUT

b* 50 44 37 31 25 18

b* MIN(NORMINV((B8),B6,B7),B5)
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    Figure 6 

 

 

Another view of the effect of the relative fares on b* is shown in Table 7.1 of Phillips (2005). 

The optimal booking limit b* increases almost linearly with the ratio of pd/pf as shown in Figure 7, ROW 

32. 
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Stochastic Demand in Capacity Allocation
INPUT   

pf $20 $20 $20 $20 $20 $20

pd $14 $14 $14 $14 $14 $14

MAX C 100 100 100 100 100 100

D mean 50 50 50 50 50 50

D stdev 1 25 50 75 100 125

pd/pf 0.70 0.70 0.70 0.70 0.70 0.70

OUTPUT

b* 51 63 76 89 100 100

b* MIN(NORMINV((B8),B6,B7),B5)
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Figure 7 

 

 

 

But at high full-fare volatility, b* reaches 100 (allocate all the available seats to the discount class if 

demanded) as the ratio of fares exceeds 65% (with these other parameter values) as shown in Figure 8. 

If  the ratio of fares is less than 35%, do not allow any discount fare bookings. 
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Phillips Table 7.1

Book Limit 0 11 25 37 50 63 75 89 100

PROB 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

MEAN 50 50 50 50 50 50 50 50 50

STDEV 100 100 100 100 100 100 100 100 100

C 100 100 100 100 100 100 100 100 100

pd/pf 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

pd 30 35 40 45 50 55 60 65 70

pf 100 100 100 100 100 100 100 100 100

STDEV 100

Book Limit MAX(MIN(NORMINV(B3,B4,B5),B6),0)

Book Limit  12 25 37 50 63 75 88 101

Book Limit -76.9+253.5*C7
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Figure 8 

 

 

In summary, the ratio of the discount/full fares plus the mean and volatility of full fare demand 

determines the maximum of a limited capacity that should be allocated to discount fares.  At high full 

fare demand volatility, the booking limit for discount fares is within a 35-65% range for these particular 

parameter values.  At lower full fare demand volatility, the booking limit is approximately a linear 

function of the ratio of fares, the intercept and ratio coefficient dependent on the parameter values.  

The CROM for allocating limited capacity between market segments will update estimates for  the mean 

and volatility of full fare demand periodically, changing also the fares charged for discount and full, and 

will update the maximum number of seats allowed for discount fares, dynamically.  
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Book Limit 0 0 12 31 50 69 88 100 100
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IV   OVERBOOKING OPTIONS 

There are at least four types of reservation restrictions for airlines, hotels, restaurants, car rentals and 

other services: nonrefundable bookings, partially refundable, refundable advance payments, and 

reservations without advance payments (sometimes “guaranteed” by credit cards).   Even 

nonrefundable customers may not show up (“no shows”= NS) for flights or  room occupancy, so many 

service providers accept reservations (OB) in excess of capacity (C) which is termed “overbooking”.  

Typically providers offer compensation (COM), or alternative arrangements, for those customers who 

are denied use at the time of departure in case C<=OB-NS.   

Assume that all bookings are completely refundable, so an empty seat (underage penalty) is worth the 

ticket fare B, and that COM is paid to all customers denied boarding at departure.  What is the optimal 

overbooking O* assuming COM is complete, that is there is no additional customer dissatisfaction that is 

not overcome by sufficient COM.  As a classical newsvendor model, where the number of NS is normally 

distributed with mean  and standard deviation , the smallest value O* is:    

( *)
B

F O OB
B COM

 


              (20) 

To find O*, use NORMINV(OB, ).  Netessine and Shumsky (2002) provide an example where the NS 

for a hotel with 210 rooms is normally distributed with =20 and =10, B=$105 and COM=$300 as 

shown in Figure 9.  The optimal number of OB=14, so up to 224 bookings should be allowed.   

Figure 9 
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                                    OPTIMAL OVERBOOKING with Stochastic No Shows

PRICE 105

DENIED Compensation 300

CAPACITY 210

Expected NoShows 20
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NORMINV 13.54

BOOKINGS ALLOWED 224
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How sensitive is the overbooking limit to variations in the estimated mean number of NoShows, 

volatility, and to the compensation required to satisfy bumped passengers?  As expected, the number of 

optimal overbookings increases with the increase in the average number of NoShows as shown in Figure 

10, so forecasting these expected NoShows is critical.  Note the optimal OB is almost a linear function of 

the Expected NS with these parameter values. 

                                                                  Figure 10 

 

Optimal overbooking is sensitive to changes in the volatility of No Shows, but only if the compensation is 

high relative to the fare.  If the volatility of the No Shows increases, the optimal overbooking does not 

decrease much (Figure 11)  if the compensation is low, but decreases significantly if the compensation is 

high (Figure 12).  So volatile customers should demand high compensation for being bumped to dampen 

the incentive of airlines to overbook aggressively. 

               Figure 11 
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                                    OPTIMAL OVERBOOKING with Stochastic No Shows
PRICE 105 105 105 105 105 105 105 105

DENIED Compensation 300 300 300 300 300 300 300 300

CAPACITY 210 210 210 210 210 210 210 210

Expected NoShows 5 10 15 20 25 30 35 40

Stdev NoShows 10 10 10 10 10 10 10 10

OB     NORMINV 0.00 3.54 8.54 13.54 18.54 23.54 28.54 33.54

BOOKINGS ALLOWED 210 214 219 224 229 234 239 244

NORMINV MAX(NORMINV((B2/(B2+B3)),B5,B6),0)

OB Approximate 3.55 8.55 13.55 18.55 23.55 28.55 33.55

OB Approximate -6.45+C5
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      Figure 12 
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                                    OPTIMAL OVERBOOKING with Stochastic No Shows
PRICE 105 105 105 105 105 105 105 105

DENIED Compensation 110 110 110 110 110 110 110 110

CAPACITY 210 210 210 210 210 210 210 210

Expected NoShows 20 20 20 20 20 20 20 20

Stdev NoShows 1 5 10 15 20 25 30 35

NORMINV 19.97 19.85 19.71 19.56 19.42 19.27 19.13 18.98

BOOKINGS ALLOWED 230 230 230 230 229 229 229 229

NORMINV MAX(NORMINV((B2/(B2+B3)),B5,B6),0)
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                                    OPTIMAL OVERBOOKING with Stochastic No Shows
PRICE 105 105 105 105 105 105 105 105

DENIED Compensation 300 300 300 300 300 300 300 300

CAPACITY 210 210 210 210 210 210 210 210

Expected NoShows 20 20 20 20 20 20 20 20

Stdev NoShows 1 5 10 15 20 25 30 35

NORMINV 19.35 16.77 13.54 10.32 7.09 3.86 0.63 0.00
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This is re-emphasized in Figure 13 which shows that if the required compensation for bumped 

customers that show up becomes high, the optimal overbookings decline (but perhaps not by as much 

as expected, since increasing the COM by 450% results in the overbookings being reduced by half).  

Perhaps this indicates how much customers being bumped could demand in compensation.  

Figure 13

 

 

V  OTHER REAL REVENUE OPTIONS 

Netessine and Shumsky (2002) and the textbooks by Phillips (2005) and Talluri and van Ryzin 

(2004) discuss several other real revenue options.  Demand forecasting models calibrate 

different distributions to historical demand, and provide various forecasting improvements as 

customer preferences change daily, seasonally and over time.  Perhaps GARCH models here are 

appropriate.   Dynamic booking limits allow for new information that appears over time, such as 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

A B C D E F G H I

                                    OPTIMAL OVERBOOKING with Stochastic No Shows
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revised demand for luxury seats nearing departure. Capacity variations allow for expansion of 

existing capacity as demand evolves, such as rental car firms obtaining additional cars from 

nearby associated units (or from other rental firms in the same location) as demand increases.   

Nonlinear overbooking compensation options include capacity expansion (especially rental 

cars) as a form of avoided compensation, and also compensation that decreases if the NS 

suddenly decline. Buy-ups and cannibalizations allow for discount passengers beyond the 

booking limit to reserve luxury seats (buy-ups) (even last minute upgrades) and upper class 

passengers to purchase discount seats (cannibalizations). Variety (among and within) booking 

classes allows different durations for room reservations within a class, and for group (or 

convention) bookings where additional facilities are required or a minimum number of rooms 

are guaranteed.  Wholly and partially refundable fares offer a menu of possible options with 

restrictions, with stochastic rebates and allowance. Some of these issues can be incorporated 

into the simple market segmentation and switching models; some require novel analysis, 

including numerical solutions.   

Several journals contain useful, if sometimes complex, discussions, including the INFORM 

library (Management Science, Marketing Science, Decision Science, Transportation Science, and 

The Journal of Revenue and Pricing Management), the European Journal of Operational 

Research, and the Journal of Economic Dynamics & Control.  
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EXERCISE 13.1 

Dom Paulo Hotels is negotiating with Smith Luxury Holidays and also Jones Discount Enjoyments 

(current long term client) for booking arrangements next year. Jones promises to pay 50=x per room, 

while Smith offers to pay 100=y if the hotel installs certain amenities such as a grand fitness room and 

25 meter pool which cost 300, a once-for-all upgrade of the facility. It would cost 70 to service the Smith 

customers, but only 10 for the Jones lot.  Both room rates are volatile (20%), are 50% correlated, yield 

4%, and the current interest rate is 5%.  Dom Paulo calculates that 11=-.4505,12=1.991, y12/x12=-

12/11, and A=(-1/x)/(11*(x12
11-1) )* y12

).  Should Dom switch now to Smith?  If not, what is the 

opportunity to switch sometime worth, RHS of EQ 5?   

EXERCISE 13.2 

MassAir has just received permission to fly directly between Manchester and Boston, currently not 

serviced by any airlines, and hopes to attract both business and discount passengers, using Boeing 737s 

with a seat capacity of 100.  Business fares via Dublin with AerLinqus are $900, and discount fares via JFK 

with NorwegianAir are $500 (including BOS-JFK connections).  From previous experience on similar 

routes it appears the business class mean will be 50, with a standard deviation of 50, and the additional 

cost of servicing business customers with lobsters, wine and massage is $100,  which is about the same 

as the inconvenience of stopping over in DUB.  What is the maximum number of discount bookings with 

two weeks in advance that should be allowed?  What if lobsters-wine-massage cost MassAir $150?  1

dF 

(pd/pf) is approximately 200*(pd/pf)-60 for these parameter values. 

EXERCISE 13.3 

MassAir has decided to offer just discount fares for their direct flights between Manchester and Boston, 

using Boeing 737s with a seat capacity of 200.  The discount fare is comparable to NorwegianAir of $300.  

From a year’s experience it appears discount class mean No Shows will be 10, with a standard deviation 

of 10.  Norwegian Air offers a compensation of $700 for bumped passengers due to overbooking.  What 

optimal bookings should MassAir allow?  OB is approximately equal to -5.24 +NS . What if NS =40?  

PROBLEM 13.4 

Dom Paulo Hotels is negotiating with Smith Luxury Holidays and also Jones Discount Enjoyments 

(current long term client) for booking arrangements next year. Jones promises to pay 50=x per room, 

while Smith offers to pay 100=y if the hotel installs certain amenities such as redecorated rooms, room 

service and a sports massage facility which cost 300, but which could be reversed at a cost of 100 for 

Discount customers. It cost 30 to service both the Smith  and Jones customers.  Both room rates are 
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volatile (20%), are 50% correlated, yield 4%, and the current interest rate is 5%.  Should Dom switch now 

to Smith?  If not, what is the opportunity to switch back and forth worth? 

PROBLEM 13.5 

After offering direct flights between Manchester and Boston with a seat capacity of 100, MassAir wants 

to experiment with increasing business fares since there is still no other direct flight between these two 

centers of education. Business fares have been $1000, and discount fares $500.  From the year’s 

experience the business class mean is 50, with a standard deviation of 100, and the additional cost of 

servicing business customers with lobsters, wine and massage is $100.  What is the maximum number of 

discount bookings that should be allowed?  

 What is the total expected revenue if all of the discount fares are booked up to the booking limit, and 

the average business booking is 50?  If business fares are in the range of $1000 to $1900 and if the mean 

business fare booking is reduced by *Fare Increase, and the standard deviation is increased by 

(/2)*Fare Increase, where =.0075, should MassAir remain a mixed-budget or a luxury only airline? 

PROBLEM 13.6 

MassAir has decided to offer just discount fares for their direct flights between Manchester and Boston, 

using Boeing 737s with a seat capacity of 100.  The discount fare is comparable to NorwegianAir of $500 

(including BOS-JFK connections).  From a year’s experience it appears discount class mean No Shows will 

be 50, with a standard deviation of 100.  MassAir has been offering only $500 compensation for bumped 

passengers due to overbooking.  Over the past few months a large number of customers have 

complained that the compensation offer (less the cost of the next day’s flight) will hardly cover a room 

at the Omni Parker Boston hotel plus dinner at the Union Oyster House.  Members of both the Cabot 

and Lodge families have recently been bumped, which they consider unacceptable.  Why have so many 

passengers been bumped?  What compensation might be required by the Mass Transportation 

Authority to virtually eliminate this onerous practice?   

 

 


